With the availability of high dimensional genetic biomarkers, it is of interest to identify heterogeneous effects of these predictors on patients' survival, along with proper statistical inference. Censored quantile regression has emerged as a powerful tool for detecting heterogeneous effects of covariates on survival outcomes. To our knowledge, there is little work available to draw inference on the effects of high dimensional predictors for censored quantile regression. This paper proposes a novel procedure to draw inference on all predictors within the framework of global censored quantile regression, which investigates covariate-response associations over an interval of quantile levels, instead of a few discrete values. The proposed estimator combines a sequence of low dimensional model estimates that are based on multi-sample splittings and variable selection. We show that, under some regularity conditions, the estimator is consistent and asymptotically follows a Gaussian process indexed by the quantile level. Simulation studies indicate that our procedure can properly quantify the uncertainty of the estimates in high dimensional settings. We apply our method to analyze the heterogeneous effects of SNPs residing in lung cancer pathways on patients' survival, using the Boston Lung Cancer Survival Cohort, a cancer epidemiology study on the molecular mechanism of lung cancer.


翻译:随着高度遗传生物标志的可用性,人们有兴趣查明这些预测器对病人生存的多种影响,以及适当的统计推论。 临界四分位回归已经成为一个强有力的工具,用来检测同种变异对生存结果的不同影响。 据我们所知,几乎没有工作可以用来推断高度预测器对受审查的四分位回归的影响。本文件提出了一个新程序,在全球受审查的量级回归框架内对所有预测器进行推论,该预测器调查的是某量级间隔间间间,而不是几个离散值的分子反应协会。提议的天花板将一系列低度模型估计组合在一起,以多度分布和变异选择为基础。我们表明,在某些常规条件下,定位器与按量级水平指数化的戈斯进程是一致的。模拟研究表明,我们的程序可以恰当地量化高度分子级环境中的相异性反应,而不是几个离异值。我们采用的方法将低维度模型的序列组合在一起,以多度分裂和多度分裂为基础,并选择不同的选择。我们发现,在某些正常条件下,定态条件下,定点温度的肺癌研究是一致的。我们用癌症的癌症的癌症的癌症的临床研究方法来分析。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
42+阅读 · 2020年7月29日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Science 一周论文导读 | 2019 年 4 月 12 日
科研圈
15+阅读 · 2019年4月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Science 一周论文导读 | 2019 年 4 月 12 日
科研圈
15+阅读 · 2019年4月21日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员