One of the common challenges faced by researchers in recent data analysis is missing values. In the context of penalized linear regression, which has been extensively explored over several decades, missing values introduce bias and yield a non-positive definite covariance matrix of the covariates, rendering the least square loss function non-convex. In this paper, we propose a novel procedure called the linear shrinkage positive definite (LPD) modification to address this issue. The LPD modification aims to modify the covariance matrix of the covariates in order to ensure consistency and positive definiteness. Employing the new covariance estimator, we are able to transform the penalized regression problem into a convex one, thereby facilitating the identification of sparse solutions. Notably, the LPD modification is computationally efficient and can be expressed analytically. In the presence of missing values, we establish the selection consistency and prove the convergence rate of the $\ell_1$-penalized regression estimator with LPD, showing an $\ell_2$-error convergence rate of square-root of $\log p$ over $n$ by a factor of $(s_0)^{3/2}$ ($s_0$: the number of non-zero coefficients). To further evaluate the effectiveness of our approach, we analyze real data from the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. This dataset provides incomplete measurements of drug sensitivities of cell lines and their protein expressions. We conduct a series of penalized linear regression models with each sensitivity value serving as a response variable and protein expressions as explanatory variables.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员