Compressive phase retrieval is a popular variant of the standard compressive sensing problem in which the measurements only contain magnitude information. In this paper, motivated by recent advances in deep generative models, we provide recovery guarantees with near-optimal sample complexity for phase retrieval with generative priors. We first show that when using i.i.d. Gaussian measurements and an $L$-Lipschitz continuous generative model with bounded $k$-dimensional inputs, roughly $O(k \log L)$ samples suffice to guarantee that any signal minimizing an amplitude-based empirical loss function is close to the true signal. Attaining this sample complexity with a practical algorithm remains a difficult challenge, and finding a good initialization for gradient-based methods has been observed to pose a major bottleneck. To partially address this, we further show that roughly $O(k \log L)$ samples ensure sufficient closeness between the underlying signal and any {\em globally optimal} solution to an optimization problem designed for spectral initialization (though finding such a solution may still be challenging). We also adapt this result to sparse phase retrieval, and show that $O(s \log n)$ samples are sufficient for a similar guarantee when the underlying signal is $s$-sparse and $n$-dimensional, matching an information-theoretic lower bound. While these guarantees do not directly correspond to a practical algorithm, we propose a practical spectral initialization method motivated by our findings, and experimentally observe performance gains over various existing spectral initialization methods for sparse phase retrieval.


翻译:压缩阶段检索是标准压缩感测问题的一种流行变体,在这种变体中,测量只包含数量级信息。在本文中,由于最近深层基因化模型的进展,我们提供了回收保证,为以基因化前缀进行阶段检索提供了接近最佳的样本复杂度。我们首先表明,在使用i.i.d.d.高斯测量和美元-利普施奇茨连续基因化模型,加上受约束的美元维度投入,大约O(k\log L)美元样本足以保证任何信号最大限度地减少基于振幅的经验损失功能的信号都接近于真实信号。保持这种样本复杂性和实用算法仍然是一项艰巨的挑战,发现基于梯度方法的良好初始初始化是主要的瓶颈。为了部分解决这个问题,我们进一步表明,大约$(k)美元(k\log L)的样本能够确保基本信号与任何全球最优化的路径之间的足够接近,对于为光谱初始化设计的优化问题(尽管找到这样的解决方案可能仍然很困难 ) 我们还将这一结果调整为低度阶段的精确性成本回收, 并且表明, 美元(美元) 一种基础的精确的精确的精确的精确的精确的计算方法可以保证, 美元(美元) 一种比值的) 一种我们为接近于深度的精确的精确的初始的精确的精确的精确的精确的精确的精确的精确的精确的计算方法, 。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
52+阅读 · 2020年9月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
32+阅读 · 2021年3月8日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员