In this paper, we explore the problem of developing personalized chatbots. A personalized chatbot is designed as a digital chatting assistant for a user. The key characteristic of a personalized chatbot is that it should have a consistent personality with the corresponding user. It can talk the same way as the user when it is delegated to respond to others' messages. We present a retrieval-based personalized chatbot model, namely IMPChat, to learn an implicit user profile from the user's dialogue history. We argue that the implicit user profile is superior to the explicit user profile regarding accessibility and flexibility. IMPChat aims to learn an implicit user profile through modeling user's personalized language style and personalized preferences separately. To learn a user's personalized language style, we elaborately build language models from shallow to deep using the user's historical responses; To model a user's personalized preferences, we explore the conditional relations underneath each post-response pair of the user. The personalized preferences are dynamic and context-aware: we assign higher weights to those historical pairs that are topically related to the current query when aggregating the personalized preferences. We match each response candidate with the personalized language style and personalized preference, respectively, and fuse the two matching signals to determine the final ranking score. Comprehensive experiments on two large datasets show that our method outperforms all baseline models.
翻译:在本文中, 我们探索开发个性化聊天机的问题。 个性化聊天机是设计成用户数字聊天助理的。 个性化聊天机的关键特征是, 个人性化聊天机应该与相应用户具有一致的个性。 当授权用户对他人的信息作出反应时, 它可以与用户以同样的方式交谈。 我们展示了一个基于检索的个性化聊天机模型, 即IMPChat, 从用户的对话历史中学习一个隐性用户配置。 我们争论说, 隐性用户配置优于关于无障碍性和灵活性的明确用户配置。 IMPChat 的目标是通过模拟用户个性化语言风格和个性化偏好分别学习一个隐性用户配置。 要学习用户个性化语言风格,我们可以用用户的历史反应从浅到深地构建语言模型; 我们为用户个性化聊天机的偏好模式, 我们探索用户对后一对后一对用户反应的有条件关系。 个性化偏好是动态的, 上面性化的偏好: 我们给那些与当前模式主题相关的历史配比, 与个人性化语言风格和个性化模式匹配的个人性化模型, 分别将个人性化模型与个人性化模型与个人性标值匹配。