Crossp-roject defect prediction (CPDP), where data from different software projects are used to predict defects, has been proposed as a way to provide data for software projects that lack historical data. Evaluations of CPDP models using the Nearest Neighbour (NN) Filter approach have shown promising results in recent studies. A key challenge with defect-prediction datasets is class imbalance, that is highly skewed datasets where non buggy modules dominate the buggy modules. In the past, data resampling approaches have been applied to within-projects defect prediction models to help alleviate the negative effects of class imbalance in the datasets. To address the class imbalance issue in CPDP, the authors assess the impact of data resampling approaches on CPDP models after the NN Filter is applied. The impact on prediction performance of five oversampling approaches (MAHAKIL, SMOTE, Borderline-SMOTE, Random Oversampling, and ADASYN) and three undersampling approaches (Random Undersampling, Tomek Links, and Onesided selection) is investigated and results are compared to approaches without data resampling. The authors' examined six defect prediction models on 34 datasets extracted from the PROMISE repository. The authors results show that there is a significant positive effect of data resampling on CPDP performance, suggesting that software quality teams and researchers should consider applying data resampling approaches for improved recall (pd) and g-measure prediction performance. However if the goal is to improve precision and reduce false alarm (pf) then data resampling approaches should be avoided.


翻译:使用不同软件项目的数据来预测缺陷的交叉点缺陷预测(CPDP)是用来为缺乏历史数据的软件项目提供数据的一种方法。使用近邻过滤器(NN)过滤法对CPCPP模型的评估在最近的研究中显示出了有希望的结果。缺陷预防数据集的主要挑战在于阶级失衡,即高度扭曲的数据集,即非错误模块在错误模块中占主导地位。过去,对项目内部的缺陷预测模型采用了数据抽查方法,以帮助减轻数据集中阶级不平衡的负面影响。为了解决CPP中的阶级不平衡问题,作者评估了数据抽查方法对NNT过滤器后CPP模型的影响。对五种过度取样方法(MAHAKIL、SMOTE、边线-SMOTE、随机过错抽查和ADSYN)的预测性能的影响,以及三种抽查不足的方法(Random Broup Brouping、Monil和单面选择)应该进行调查,然后将数据结果与预测方法进行比较。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员