We study the problem of data-driven background estimation, arising in the search of physics signals predicted by the Standard Model at the Large Hadron Collider. Our work is motivated by the search for the production of pairs of Higgs bosons decaying into four bottom quarks. A number of other physical processes, known as background, also share the same final state. The data arising in this problem is therefore a mixture of unlabeled background and signal events, and the primary aim of the analysis is to determine whether the proportion of unlabeled signal events is nonzero. A challenging but necessary first step is to estimate the distribution of background events. Past work in this area has determined regions of the space of collider events where signal is unlikely to appear, and where the background distribution is therefore identifiable. The background distribution can be estimated in these regions, and extrapolated into the region of primary interest using transfer learning of a multivariate classifier. We build upon this existing approach in two ways. On the one hand, we revisit this method by developing a powerful new classifier architecture tailored to collider data. On the other hand, we develop a new method for background estimation, based on the optimal transport problem, which relies on distinct modeling assumptions. These two methods can serve as powerful cross-checks for each other in particle physics analyses, due to the complementarity of their underlying assumptions. We compare their performance on simulated collider data.
翻译:我们研究的是数据驱动背景估计问题,这是在大型哈德龙对撞机标准模型预测的物理信号搜索过程中产生的数据驱动背景估计问题。我们的工作动力是寻找在四个底方方格中衰落成的两对希格斯波孙的成对。一些其他物理过程,称为背景,也具有相同的最终状态。因此,这一问题中产生的数据是未经标记的背景和信号事件的混合体,分析的主要目的是确定未贴标签信号事件的比例是否为非零。一个具有挑战性但必要的第一步是估计背景事件的分布情况。该领域过去的工作确定了不可能出现信号的对焦事件空间区域,因此背景分布可以识别。背景分布可以对这些区域进行估计,并利用多变式分类器的转移学习和信号事件对主要利益区域进行外推。我们以两种方式利用这一现有方法。一方面,我们通过开发一个强大的新的分类器结构来根据collder数据数据进行分类。另一方面,我们通过开发新的模拟模型,我们开发了一种新的分析方法,用以根据不同的精确性分析其基础性推算出两种不同的模型。我们用这些精确的模型来推算出一种不同的分析。