We present a new technique that enables manifold learning to accurately embed data manifolds that contain holes, without discarding any topological information. Manifold learning aims to embed high dimensional data into a lower dimensional Euclidean space by learning a coordinate chart, but it requires that the entire manifold can be embedded in a single chart. This is impossible for manifolds with holes. In such cases, it is necessary to learn an atlas: a collection of charts that collectively cover the entire manifold. We begin with many small charts, and combine them in a bottom-up approach, where charts are only combined if doing so will not introduce problematic topological features. When it is no longer possible to combine any charts, each chart is individually embedded with standard manifold learning techniques, completing the construction of the atlas. We show the efficacy of our method by constructing atlases for challenging synthetic manifolds; learning human motion embeddings from motion capture data; and learning kinematic models of articulated objects.
翻译:我们提出了一个新的技术,使多方面的学习能够准确嵌入含有洞洞的数据元,而不会丢弃任何地形信息。 人工学习的目的是通过学习协调图表将高维数据嵌入低维欧几里德空间, 但需要将全部元都嵌入一个单一的图表中。 对于有洞的元体来说,这是不可能的。 在这种情况下, 有必要学习一个地图集: 一组包含全部元的图表集。 我们从许多小图开始, 把它们结合到一个自下而上的方法中, 只有将图表合并起来, 才能不引入有问题的地形特征。 当无法再将任何图表合并时, 每张图表都单独嵌入一个标准的多重学习技术, 完成地图集的构造。 我们通过绘制具有挑战性的合成元体图集来展示我们的方法的功效; 从运动捕获数据中学习人类运动嵌入的图集; 学习表达的物体的动向模型。