Monocular depth estimation and image deblurring are two fundamental tasks in computer vision, given their crucial role in understanding 3D scenes. Performing any of them by relying on a single image is an ill-posed problem. The recent advances in the field of deep convolutional neural networks (DNNs) have revolutionized many tasks in computer vision, including depth estimation and image deblurring. When it comes to using defocused images, the depth estimation and the recovery of the All-in-Focus (Aif) image become related problems due to defocus physics. In spite of this, most of the existing models treat them separately. There are, however, recent models that solve these problems simultaneously by concatenating two networks in a sequence to first estimate the depth or defocus map and then reconstruct the focused image based on it. We propose a DNN that solves the depth estimation and image deblurring in parallel. Our Two-headed Depth Estimation and Deblurring Network (2HDED:NET) extends a conventional Depth from Defocus (DFD) network with a deblurring branch that shares the same encoder as the depth branch. The proposed method has been successfully tested on two benchmarks, one for indoor and the other for outdoor scenes: NYU-v2 and Make3D. Extensive experiments with 2HDED:NET on these benchmarks have demonstrated superior or close performances to those of the state-of-the-art models for depth estimation and image deblurring.


翻译:在计算机视野中,单心深度估计和图像破碎是两项基本任务,因为它们在理解 3D 场景方面具有关键作用。 使用任何一种方式使用单一图像来完成其中任何一种方法都是不恰当的问题。 深革命性神经网络(DNNs)领域最近的进展使计算机视觉领域的许多任务发生了革命性的变化, 包括深度估计和图像破碎。 当涉及到使用分心图像时, 深度估计和恢复全心深度( Aif) 图像会因物理脱焦而成为相关问题。 尽管如此, 大多数现有模型会分别处理它们。 然而, 最近的一些模型可以同时解决这些问题, 将两个网络连接成一个序列, 以便首先对深度或偏心的地图进行估计, 然后根据它重建重点图像。 我们建议一个 DNN, 来解决深度估计和图像破碎的平行问题。 我们的双头深度深度深度估计和淡化网络 (2HDDED:NET) 扩展了DeG(DD) 网络的常规深度, 与两个深度的DBurring 分支同时解决这些问题, 并且将这些深度测试了这些深度的深度和深度分析。 。 在深度上, 这些深度上, 和深度测试了这些深度的室的深度的深度上, 和深度上, 和深层的深度的深度的深度的模拟的模拟, 和深层的模拟, 和深层的模型的模拟的模拟的模拟的模拟, 和深层的模拟, 和深度的模拟的模拟的模拟的模拟的模拟的模拟是: 。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月10日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
12+阅读 · 2020年8月3日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员