Distributed energy resources are better for the environment but may cause transformer overload in distribution grids, calling for recovering meter-transformer mapping to provide situational awareness, i.e., the transformer loading. The challenge lies in recovering meter-transformer (M.T.) mapping for two common scenarios, e.g., large distances between a meter and its parent transformer or high similarity of a meter's consumption pattern to a non-parent transformer's meters. Past methods either assume a variety of data as in the transmission grid or ignore the two common scenarios mentioned above. Therefore, we propose to utilize the above observation via spectral embedding by using the property that inter-transformer meter consumptions are not the same and that the noise in data is limited so that all the k smallest eigenvalues of the voltage-based Laplacian matrix are smaller than the next smallest eigenvalue of the ideal Laplacian matrix. We also provide a guarantee based on this understanding. Furthermore, we partially relax the assumption by utilizing location information to aid voltage information for areas geographically far away but with similar voltages. Numerical simulations on the IEEE test systems and real feeders from our partner utility show that the proposed method correctly identifies M.T. mapping.
翻译:分布式能源资源对环境来说比较好,但可能造成分布式电网变压器超负荷,要求恢复仪表变换绘图,以提供情景意识,即变压器装载。挑战在于恢复仪表变换(M.T.)对两种常见假设的映射,例如,一个表与其母变压器之间的长距离,或一个表的消费模式与一个非母变压器的表的高度相似。过去的方法要么假设传输网中的数据种类繁多,要么忽略上述两种共同假设。因此,我们提议利用光谱嵌入来利用上述观测,方法是利用数据转换式电表消费不相同的属性,而且数据中的噪音有限,这样,基于电压的拉普拉普拉基亚矩阵的所有千位值都小于理想变压器的下一个最小电子元值。我们还根据这一理解提供了一种保证。此外,我们部分放松了上述假设,利用位置信息为远处地区提供帮助性电压信息,但使用类似的电流数据,从而准确地确定了我们提议的通用数据模拟系统。