Predicting the future motion of dynamic agents is of paramount importance to ensure safety or assess risks in motion planning for autonomous robots. In this paper, we propose a two-stage motion prediction method, referred to as R-Pred, that effectively utilizes both the scene and interaction context using a cascade of the initial trajectory proposal network and the trajectory refinement network. The initial trajectory proposal network produces M trajectory proposals corresponding to M modes of a future trajectory distribution. The trajectory refinement network enhances each of M proposals using 1) the tube-query scene attention (TQSA) and 2) the proposal-level interaction attention (PIA). TQSA uses tube-queries to aggregate the local scene context features pooled from proximity around the trajectory proposals of interest. PIA further enhances the trajectory proposals by modeling inter-agent interactions using a group of trajectory proposals selected based on their distances from neighboring agents. Our experiments conducted on the Argoverse and nuScenes datasets demonstrate that the proposed refinement network provides significant performance improvements compared to the single-stage baseline and that R-Pred achieves state-of-the-art performance in some categories of the benchmark.
翻译:在本文件中,我们提出了一个称为R-Pred的两阶段运动预测方法,利用最初的轨道建议网络和轨迹改进网络的级联,有效地利用现场和互动环境,初步轨道建议网络产生与未来轨迹分布模式M相对应的M轨迹建议;轨迹改进网络利用1)管解场注意(TQSA)和2(PIA)建议层面的互动关注(PIA)加强每个M项建议;TQSA利用管盘将当地场景环境特征从接近有关轨迹建议的地方集合起来;PIA进一步增强轨迹建议,利用一组根据距离邻近物剂而选定的轨迹建议进行模拟;我们在Argoverse和nuScenes数据集进行的实验表明,拟议的改进网络与单一阶段基线相比,提供了显著的业绩改进,而且R-Pred在某些基准类别中取得了最新业绩。