In practice, most auction mechanisms are not strategy-proof, so equilibrium analysis is required to predict bidding behavior. In many auctions, though, an exact equilibrium is not known and one would like to understand whether -- manually or computationally generated -- bidding strategies constitute an approximate equilibrium. We develop a framework and methods for estimating the distance of a strategy profile from equilibrium, based on samples from the prior and either bidding strategies or sample bids. We estimate an agent's utility gain from deviating to strategies from a constructed finite subset of the strategy space. We use PAC-learning to give error bounds, both for independent and interdependent prior distributions. The primary challenge is that one may miss large utility gains by considering only a finite subset of the strategy space. Our work differs from prior research in two critical ways. First, we explore the impact of bidding strategies on altering opponents' perceived prior distributions -- instead of assuming the other agents to bid truthfully. Second, we delve into reasoning with interdependent priors, where the type of one agent may imply a distinct distribution for other agents. Our main contribution lies in establishing sufficient conditions for strategy profiles and a closeness criterion for conditional distributions to ensure that utility gains estimated through our finite subset closely approximate the maximum gains. To our knowledge, ours is the first method to verify approximate equilibrium in any auctions beyond single-item ones. Also, ours is the first sample-based method for approximate equilibrium verification.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年10月4日
Arxiv
0+阅读 · 2024年10月2日
Arxiv
0+阅读 · 2024年10月1日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年10月4日
Arxiv
0+阅读 · 2024年10月2日
Arxiv
0+阅读 · 2024年10月1日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
38+阅读 · 2020年12月2日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员