Human face images usually appear with wide range of visual scales. The existing face representations pursue the bandwidth of handling scale variation via multi-scale scheme that assembles a finite series of predefined scales. Such multi-shot scheme brings inference burden, and the predefined scales inevitably have gap from real data. Instead, learning scale parameters from data, and using them for one-shot feature inference, is a decent solution. To this end, we reform the conv layer by resorting to the scale-space theory, and achieve two-fold facilities: 1) the conv layer learns a set of scales from real data distribution, each of which is fulfilled by a conv kernel; 2) the layer automatically highlights the feature at the proper channel and location corresponding to the input pattern scale and its presence. Then, we accomplish the hierarchical scale attention by stacking the reformed layers, building a novel style named SCale AttentioN Conv Neural Network (\textbf{SCAN-CNN}). We apply SCAN-CNN to the face recognition task and push the frontier of SOTA performance. The accuracy gain is more evident when the face images are blurry. Meanwhile, as a single-shot scheme, the inference is more efficient than multi-shot fusion. A set of tools are made to ensure the fast training of SCAN-CNN and zero increase of inference cost compared with the plain CNN.
翻译:人类脸部图象通常以广泛的视觉尺度出现。 现有面部表情通过多尺度的组合组合一系列预定比例尺, 追求通过多尺度的图案处理比例变异的带宽。 这种多发图案带来推论负担, 预定义的尺度必然会与真实数据产生差距。 相反, 从数据中学习的尺度参数, 并用它们来进行一发特征推断, 是一个体面的解决办法。 为此, 我们通过使用比例空间理论来改革调控层, 并实现两重设施 :1) conv 层从真实数据分布中学习一组比例表情, 每一个都是由一个内核完成的; 2 层自动突出与输入模式规模及其存在相对应的适当频道和位置的特征。 然后, 我们通过堆叠改造层来完成等级表层注意, 建立名为 SCale AttentiN 的新型神经网络(\ textbf{SCAN- CN} 。 我们应用 Scan- 来进行面部识别任务, 并推进SATA的前沿功能。 当面图象的准确度增加时, 当面图面图面面面面面面面面面面图的图比面面面部的面部的面面面部的面部更清晰度增加成本时, 更明显, 时, 的准确性增后, 将SBAN 的频率比平面平面平面图是模糊, 。