In ultracold atom experiments, data often comes in the form of images which suffer information loss inherent in the techniques used to prepare and measure the system. This is particularly problematic when the processes of interest are complicated, such as interactions among excitations in Bose-Einstein condensates (BECs). In this paper, we describe a framework combining machine learning (ML) models with physics-based traditional analyses to identify and track multiple solitonic excitations in images of BECs. We use an ML-based object detector to locate the solitonic excitations and develop a physics-informed classifier to sort solitonic excitations into physically motivated sub-categories. Lastly, we introduce a quality metric quantifying the likelihood that a specific feature is a kink soliton. Our trained implementation of this framework -- SolDet -- is publicly available as an open-source python package. SolDet is broadly applicable to feature identification in cold atom images when trained on a suitable user-provided dataset.
翻译:在超冷原子实验中,数据往往以图像的形式出现,这些图像在准备和测量系统所用技术中所固有的信息丢失。当感兴趣的过程复杂时,这特别成问题,例如Bose-Einstein condensates(BECs)中的引力相互作用。在本文中,我们描述了一个将机器学习模型与基于物理的传统分析相结合的框架,以识别和跟踪BECs图像中的多种单声感应。我们使用一个基于 ML 的物体探测器来定位软音感应,并开发一个了解物理学的分类器,将单声感应分解成以物理为动机的子分类。最后,我们引入一个高质量的衡量标准,以量化某一具体特征是离子索利顿的可能性。我们经过培训的这一框架(SoLDet)的实施作为开放源的 python 软件包公开提供。 SoltDet在进行适当的用户提供的数据集培训时,广泛适用于冷原子图像中的特征识别。