Robust machine learning is an increasingly important topic that focuses on developing models resilient to various forms of imperfect data. Due to the pervasiveness of recommender systems in online technologies, researchers have carried out several robustness studies focusing on data sparsity and profile injection attacks. Instead, we propose a more holistic view of robustness for recommender systems that encompasses multiple dimensions - robustness with respect to sub-populations, transformations, distributional disparity, attack, and data sparsity. While there are several libraries that allow users to compare different recommender system models, there is no software library for comprehensive robustness evaluation of recommender system models under different scenarios. As our main contribution, we present a robustness evaluation toolkit, Robustness Gym for RecSys (RGRecSys -- https://www.github.com/salesforce/RGRecSys), that allows us to quickly and uniformly evaluate the robustness of recommender system models.


翻译:强力机器学习是一个日益重要的主题,重点是开发适应各种形式的不完善数据的模型。由于在线技术中建议系统的普遍性,研究人员开展了几项稳健性研究,重点是数据宽度和剖面注入攻击。相反,我们建议对包含多个层面的建议系统采取更加全面的稳健性观点 -- -- 亚群、变换、分布差异、攻击和数据宽度方面的稳健性。虽然有几家图书馆允许用户比较不同的推荐系统模型,但是没有软件库对不同情景下的建议系统模型进行全面稳健性评估。作为我们的主要贡献,我们提出了一个稳健性评估工具包,即RecSys的强力性Gym(RGRecys-https://www.github.com/salesforce/RGRecSys),使我们能够快速和一致地评价推荐系统模型的稳健性。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
RecSys Challenge 历年推荐赛题汇总
机器学习与推荐算法
0+阅读 · 2022年2月21日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
RecSys2021推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2021年8月23日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
RecSys Challenge 历年推荐赛题汇总
机器学习与推荐算法
0+阅读 · 2022年2月21日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
RecSys2021推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2021年8月23日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员