Robust machine learning is an increasingly important topic that focuses on developing models resilient to various forms of imperfect data. Due to the pervasiveness of recommender systems in online technologies, researchers have carried out several robustness studies focusing on data sparsity and profile injection attacks. Instead, we propose a more holistic view of robustness for recommender systems that encompasses multiple dimensions - robustness with respect to sub-populations, transformations, distributional disparity, attack, and data sparsity. While there are several libraries that allow users to compare different recommender system models, there is no software library for comprehensive robustness evaluation of recommender system models under different scenarios. As our main contribution, we present a robustness evaluation toolkit, Robustness Gym for RecSys (RGRecSys -- https://www.github.com/salesforce/RGRecSys), that allows us to quickly and uniformly evaluate the robustness of recommender system models.
翻译:强力机器学习是一个日益重要的主题,重点是开发适应各种形式的不完善数据的模型。由于在线技术中建议系统的普遍性,研究人员开展了几项稳健性研究,重点是数据宽度和剖面注入攻击。相反,我们建议对包含多个层面的建议系统采取更加全面的稳健性观点 -- -- 亚群、变换、分布差异、攻击和数据宽度方面的稳健性。虽然有几家图书馆允许用户比较不同的推荐系统模型,但是没有软件库对不同情景下的建议系统模型进行全面稳健性评估。作为我们的主要贡献,我们提出了一个稳健性评估工具包,即RecSys的强力性Gym(RGRecys-https://www.github.com/salesforce/RGRecSys),使我们能够快速和一致地评价推荐系统模型的稳健性。