In this contribution we derive and analyze a new numerical method for kinetic equations based on a variable transformation of the moment approximation. Classical minimum-entropy moment closures are a class of reduced models for kinetic equations that conserve many of the fundamental physical properties of solutions. However, their practical use is limited by their high computational cost, as an optimization problem has to be solved for every cell in the space-time grid. In addition, implementation of numerical solvers for these models is hampered by the fact that the optimization problems are only well-defined if the moment vectors stay within the realizable set. For the same reason, further reducing these models by, e.g., reduced-basis methods is not a simple task. Our new method overcomes these disadvantages of classical approaches. The transformation is performed on the semi-discretized level which makes them applicable to a wide range of kinetic schemes and replaces the nonlinear optimization problems by inversion of the positive-definite Hessian matrix. As a result, the new scheme gets rid of the realizability-related problems. Moreover, a discrete entropy law can be enforced by modifying the time stepping scheme. Our numerical experiments demonstrate that our new method is often several times faster than the standard optimization-based scheme.
翻译:在此贡献中,我们得出并分析一种基于瞬间近似变异的动能方程的新数字方法。 经典最低渗透时刻关闭是运动方程减缩模型的一类,它保存了解决方案的许多基本物理特性。 但是,它们的实际使用由于计算成本高而受到限制,因为必须解决空间时网中每个单元格的优化问题。 此外,这些模型的数值解答器的实施受到以下事实的阻碍:优化问题只有在矢量停留在可变化的数据集内时才会被很好地界定。 出于同样的原因,通过减少基质的方法进一步减少这些模型并不是一项简单的任务。 我们的新方法克服了经典方法的这些缺点。 转换是在半分化水平上进行的,使这些模型适用于广泛的动态系统,并取代非线性优化问题,因为反正确定海珊矩阵。 结果是,新方案将消除与可变化性有关的问题。 此外,一个离子加密法新模型往往能够通过我们的标准时间模型来显示我们的标准修正方法。