Stan is an open-source probabilistic programing language, primarily designed to do Bayesian data analysis. Its main inference algorithm is an adaptive Hamiltonian Monte Carlo sampler, supported by state of the art gradient computation. Stan's strengths include efficient computation, an expressive language which offers a great deal of flexibility, and numerous diagnostics that allow modelers to check whether the inference is reliable. Torsten extends Stan with a suite of functions that facilitate the specification of pharmacokinetic and pharmacodynamic models, and makes it straightforward to specify a clinical event schedule. Part I of this tutorial demonstrates how to build, fit, and criticize standard pharmacokinetic and pharmacodynamic models using Stan and Torsten.
翻译:Stan是开放源代码的概率编程语言,主要设计用于贝叶西亚数据分析。其主要的推论算法是适应性汉密尔顿蒙特卡洛取样器,并辅之以先进的梯度计算。 Stan的长处包括高效计算,这是一种能提供大量灵活性的直观语言,以及让模型家能够检查推理是否可靠的许多诊断。Torsten将斯坦扩展为一套功能,便于规范药用动力学和药用动力学模型,并直截了当地指定临床活动时间表。本辅导课程的第一部分展示了如何利用斯坦和托斯顿建立、适应和批评标准的药用动力学和药用药用动力学模型的方法。