The probability distribution of precipitation amount strongly depends on geography, climate zone, and time scale considered. Closed-form parametric probability distributions are not sufficiently flexible to provide accurate and universal models for precipitation amount over different time scales. In this paper we derive non-parametric estimates of the cumulative distribution function (CDF) of precipitation amount for wet time intervals. The CDF estimates are obtained by integrating the kernel density estimator leading to semi-explicit CDF expressions for different kernel functions. We investigate kernel-based CDF estimation with an adaptive plug-in bandwidth (KCDE), using both synthetic data sets and reanalysis precipitation data from the island of Crete (Greece). We show that KCDE provides better estimates of the probability distribution than the standard empirical (staircase) estimate and kernel-based estimates that use the normal reference bandwidth. We also demonstrate that KCDE enables the simulation of non-parametric precipitation amount distributions by means of the inverse transform sampling method.
翻译:降水量的概率分布在很大程度上取决于地理、气候区和时间尺度。封闭式参数概率分布不够灵活,无法为不同时间尺度的降水量提供准确和通用的模型。在本文中,我们得出湿时间间隔降水量累积分布函数(CDF)的非参数估计值。CDF估计数是通过整合内核密度估计值获得的,从而导致不同内核功能的半显性 CDF 表达式。我们利用合成数据集和重新分析克里特岛(希腊)降水量数据,用适应性外插带(KCDE)来调查内核基CDF估计值。我们显示,KCDE提供的概率分布估计数比使用正常参考带的常规经验(staircase)估计值和内核估计值要好。我们还表明,KCDE能够通过反向转换采样方法模拟非参数降水量分布。