The rise of automation and machine learning (ML) in electron microscopy has the potential to revolutionize materials research by enabling the autonomous collection and processing of vast amounts of atomic resolution data. However, a major challenge is developing ML models that can reliably and rapidly generalize to large data sets with varying experimental conditions. To overcome this challenge, we develop a cycle generative adversarial network (CycleGAN) that introduces a novel reciprocal space discriminator to augment simulated data with realistic, complex spatial frequency information learned from experimental data. This enables the CycleGAN to generate nearly indistinguishable images from real experimental data, while also providing labels for further ML applications. We demonstrate the effectiveness of this approach by training a fully convolutional network (FCN) to identify single atom defects in a large data set of 4.5 million atoms, which we collected using automated acquisition in an aberration-corrected scanning transmission electron microscope (STEM). Our approach yields highly adaptable FCNs that can adjust to dynamically changing experimental variables, such as lens aberrations, noise, and local contamination, with minimal manual intervention. This represents a significant step towards building fully autonomous approaches for harnessing microscopy big data.
翻译:电子显微镜中自动化和机器学习(ML)的兴起有可能通过自主收集和处理大量原子分辨率数据而使材料研究发生革命性的变化,然而,一个重大挑战是开发ML模型,这些模型能够可靠和迅速地推广到具有不同实验条件的大型数据集。为了克服这一挑战,我们开发了一个循环基因对抗网络(CycleGAN),引入一个新的相互空间歧视器,用从实验数据中获取的现实、复杂的空间频率信息来增加模拟数据。这使CyculeGAN能够从真实的实验数据中产生几乎无法分辨的图像,同时为进一步的ML应用程序提供标签。我们通过培训一个全面革命网络来展示这一方法的有效性,以在450万原子的大型数据集中发现单一的缺陷。我们用一个自动获取的、经过畸变校校的扫描传输显微镜(STEM)来收集的网络。我们的方法使得FCN具有高度适应性,能够适应动态变化的实验变量,例如透镜畸形、噪音和局部污染,并采用最低限度的手动干预。这代表了全面自动建立大数据的重要步骤。