Trajectory Representation Learning (TRL) aims to encode raw trajectories into low-dimensional vectors, which can then be leveraged in various downstream tasks, including travel time estimation, location prediction, and trajectory similarity analysis. However, existing TRL methods suffer from a key oversight: treating trajectories as isolated spatio-temporal sequences, without considering the external environment and internal route choice behavior that govern their formation. To bridge this gap, we propose a novel framework that unifies comprehensive environment \textbf{P}erception and explicit \textbf{R}oute choice modeling for effective \textbf{Traj}ectory representation learning, dubbed \textbf{PRTraj}. Specifically, PRTraj first introduces an Environment Perception Module to enhance the road network by capturing multi-granularity environmental semantics from surrounding POI distributions. Building on this environment-aware backbone, a Route Choice Encoder then captures the route choice behavior inherent in each trajectory by modeling its constituent road segment transitions as a sequence of decisions. These route-choice-aware representations are finally aggregated to form the global trajectory embedding. Extensive experiments on 3 real-world datasets across 5 downstream tasks validate the effectiveness and generalizability of PRTraj. Moreover, PRTraj demonstrates strong data efficiency, maintaining robust performance under few-shot scenarios. Our code is available at: https://anonymous.4open.science/r/PRTraj.


翻译:轨迹表示学习(TRL)旨在将原始轨迹编码为低维向量,进而应用于行程时间估计、位置预测和轨迹相似性分析等多种下游任务。然而,现有TRL方法存在一个关键缺陷:将轨迹视为孤立的时空序列,忽略了支配其形成的外部环境与内部路径选择行为。为弥补这一不足,我们提出了一种新颖框架,通过统一全面的环境**感**知与显式**路**径选择建模来实现有效的**轨迹**表示学习,该框架命名为**PRTraj**。具体而言,PRTraj首先引入环境感知模块,通过捕获周边POI分布的多粒度环境语义来增强路网表示。在此环境感知主干网络基础上,路径选择编码器通过将轨迹中的路段转移建模为决策序列,从而捕捉每条轨迹内在的路径选择行为。这些具有路径选择感知的表示最终被聚合为全局轨迹嵌入。在3个真实数据集上针对5项下游任务开展的广泛实验验证了PRTraj的有效性与泛化能力。此外,PRTraj展现出强大的数据效率,在少样本场景下仍保持稳健性能。代码已开源:https://anonymous.4open.science/r/PRTraj。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员