Semantic Role Labeling (SRL) aims at recognizing the predicate-argument structure of a sentence and can be decomposed into two subtasks: predicate disambiguation and argument labeling. Prior work deals with these two tasks independently, which ignores the semantic connection between the two tasks. In this paper, we propose to use the machine reading comprehension (MRC) framework to bridge this gap. We formalize predicate disambiguation as multiple-choice machine reading comprehension, where the descriptions of candidate senses of a given predicate are used as options to select the correct sense. The chosen predicate sense is then used to determine the semantic roles for that predicate, and these semantic roles are used to construct the query for another MRC model for argument labeling. In this way, we are able to leverage both the predicate semantics and the semantic role semantics for argument labeling. We also propose to select a subset of all the possible semantic roles for computational efficiency. Experiments show that the proposed framework achieves state-of-the-art or comparable results to previous work. Code is available at \url{https://github.com/ShannonAI/MRC-SRL}.
翻译:语义作用标签( SRL) 旨在识别一个句子的上游参数结构, 并可以分解成两个子任务 : 上游隐含和参数标签 。 先前的工作独立处理这两个任务, 忽略了这两个任务之间的语义联系 。 在本文中, 我们提议使用机器阅读理解( MRC) 框架来弥合这一差距 。 我们正式将上游脱义作为多重选择机读理解, 将给定的上游的候选感知描述用作选择正确感的选项 。 然后, 选择的上游感用于确定该上游的语义作用, 而这些语义作用被用来构建另一个 MRC 参数标签模型的查询 。 这样, 我们就能利用 上游语义学 和语义作用 语义 语义学来标注这一差距 。 我们还提议为计算效率选择所有可能的语义作用的子集 。 实验显示, 拟议的框架实现了该词的状态或与前一个工作相近的结果 。 代码可在 http://Lambur/ SRqum/ comnon 。