Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains for inference and learning via the dynamic, online, event-driven processing of binary time series. Most existing learning algorithms for SNNs are based on deterministic neuronal models, such as leaky integrate-and-fire, and rely on heuristic approximations of backpropagation through time that enforce constraints such as locality. In contrast, probabilistic SNN models can be trained directly via principled online, local, update rules that have proven to be particularly effective for resource-constrained systems. This paper investigates another advantage of probabilistic SNNs, namely their capacity to generate independent outputs when queried over the same input. It is shown that the multiple generated output samples can be used during inference to robustify decisions and to quantify uncertainty -- a feature that deterministic SNN models cannot provide. Furthermore, they can be leveraged for training in order to obtain more accurate statistical estimates of the log-loss training criterion, as well as of its gradient. Specifically, this paper introduces an online learning rule based on generalized expectation-maximization (GEM) that follows a three-factor form with global learning signals and is referred to as GEM-SNN. Experimental results on structured output memorization and classification on a standard neuromorphic data set demonstrate significant improvements in terms of log-likelihood, accuracy, and calibration when increasing the number of samples used for inference and training.


翻译:Spik Neural 网络( SNN) 捕捉生物大脑的某些效率, 以便通过动态、 在线、 事件驱动的神经时间序列进行推断和学习。 多数 SNN 的现有学习算法都基于确定性神经模型, 如泄漏整合与火灾, 并依靠确定性 SNN 模型的背面偏差近似值, 以施加诸如地点等限制。 相比之下, 概率 SNN 模型可以直接通过原则性在线、 当地、 更新规则来培训, 事实证明这些规则对资源限制的系统特别有效。 本文调查了概率性 SNNN 的另一个优势, 即当询问同一输入时, 即它们产生独立产出的能力。 显示, 多个生成的产出样本可以在推断决定和量化不确定性的过程中使用。 确定性 SNNNN模型无法提供这一特征。 此外, 也可以利用这些模型进行培训, 以便获得对日志损失培训标准标准标准值标准值以及梯度进行更准确的统计估计。 具体地, 本文介绍了基于普遍预期- 和精确性 的精确性 数据化的在线学习规则, 将GEMmeximal- sal- slational- silizmillation 的模型作为全球 的系统化 的系统化 的系统化 的系统化 的系统化,, 的系统化 显示 的系统化 显示 的系统化 的系统化 数据 的系统化 。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年11月3日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月8日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
7+阅读 · 2019年6月20日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
0+阅读 · 2021年3月8日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
7+阅读 · 2019年6月20日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
8+阅读 · 2018年5月15日
Top
微信扫码咨询专知VIP会员