Symmetry is a unifying concept in physics. In quantum information and beyond, it is known that quantum states possessing symmetry are not useful for certain information-processing tasks. For example, states that commute with a Hamiltonian realizing a time evolution are not useful for timekeeping during that evolution, and bipartite states that are highly extendible are not strongly entangled and thus not useful for basic tasks like teleportation. Motivated by this perspective, this paper details several quantum algorithms that test the symmetry of quantum states and channels. For the case of testing Bose symmetry of a state, we show that there is a simple and efficient quantum algorithm, while the tests for other kinds of symmetry rely on the aid of a quantum prover. We prove that the acceptance probability of each algorithm is equal to the maximum symmetric fidelity of the state being tested, thus giving a firm operational meaning to these latter resource quantifiers. Special cases of the algorithms test for incoherence or separability of quantum states. We evaluate the performance of these algorithms on choice examples by using the variational approach to quantum algorithms, replacing the quantum prover with a parameterized circuit. We demonstrate this approach for numerous examples using the IBM quantum noiseless and noisy simulators, and we observe that the algorithms perform well in the noiseless case and exhibit noise resilience in the noisy case. We also show that the maximum symmetric fidelities can be calculated by semi-definite programs, which is useful for benchmarking the performance of these algorithms for sufficiently small examples. Finally, we establish various generalizations of the resource theory of asymmetry, with the upshot being that the acceptance probabilities of the algorithms are resource monotones and thus well motivated from the resource-theoretic perspective.
翻译:物理上的对称性是一个统一的概念。 在量子信息及其他方面, 人们知道量子国家拥有对称性对于某些信息处理任务没有用处。 例如, 表示与汉密尔顿人实现时间进化的通勤对于在进化过程中保持时间变化没有用处, 而高度扩展的两边国家没有很强的纠缠, 因而对远程传输等基本任务没有用处。 受此观点的启发, 本文详细介绍了若干量子算法, 以测试量子状态和渠道的对称性。 对于测试一个状态的波斯对称性对称来说, 我们显示有一个简单而高效的量子算法, 而其他类型对量值的测试则依赖于量子验证师的帮助。 我们证明, 每种算法的接受概率与最大对等的对等性, 使后一种资源量子量子的量化具有坚定的操作意义。 用于测量量子状态的不精确度测试的特殊案例, 我们用不精确的算法来评估这些选择性实例的性, 通过使用变率方法, 来证明, 我们的对量子量子序列的对量子的对量子的精确进度评估, 的测法的测法, 显示, 的对量子的对量子的对量子的对量子的对量子的判断性, 的对量子学的精确性, 显示, 我们的对量子的对量子的精确性, 显示的对量法的对量法的判断性, 我们的对量法的对量法的对量法的对量法的对量子学的对量子的对量法性能性能,,,, 的对量法的对量法性能的对量法的对量法性, 的对量子的对量子的对量子的对量子学的对量学的判断性, 的判断性能的对量子学的对量子学的对量子学的演学的判断性, 以我们用我们用, 的对量法学的对量学的对量法性,我们的对量子学的对量法的对量子学的对量子学的对量法性能的对量子学的对量子的对量子