The Delsarte linear program is used to bound the size of codes given their block length $n$ and minimal distance $d$ by taking a linear relaxation from codes to quasicodes. We study for which values of $(n,d)$ this linear program has a unique optimum: while we show that it does not always have a unique optimum, we prove that it does if $d>n/2$ or if $d \leq 2$. Introducing the Krawtchouk decomposition of a quasicode, we prove there exist optima to the $(n,2e)$ and $(n-1,2e-1)$ linear programs that have essentially identical Krawtchouk decompositions, revealing a parity phenomenon among the Delsarte linear programs. We generalize the notion of extending and puncturing codes to quasicodes, from which we see that this parity relationship is given by extending/puncturing. We further characterize these pairs of optima, in particular demonstrating that they exhibit a symmetry property, effectively halving the number of decision variables.
翻译:Delsarte线性程序用来约束代码的大小,因为其区块长度为$n和最低距离值,从代码到准代码都有线性放松。我们研究了这个线性程序有其独特最佳价值的值$(n,d)美元:虽然我们表明它并不总是有独特的最佳值,但我们证明,如果它有其独特性能,如果是$d>n/2美元,或者如果是$d\leq 2美元,那么它就会有。在引入Krawtchouk分解准代码时,我们证明存在对美元(n)和美元(n)-1,2e-1美元(n)线性能,它们基本上相同的Krawtchouk分解剖程序,揭示了德尔萨特线性程序之间的一种均等现象。我们把扩展和将代码插入准代码的概念普遍化为准代码,我们从中看到这种对等关系是通过延伸/吞噬的。我们进一步描述这些选择性对夫妇,特别是表明它们表现出一种对称性属性,有效地将决定变量的数量减半。