In this paper, we consider sequential testing over a single-sensor, a single-decision center setup. At each time instant $t$, the sensor gets $k$ samples $(k>0)$ and describes the observed sequence until time $t$ to the decision center over a zero-rate noiseless link. The decision center sends a single bit of feedback to the sensor to request for more samples for compression/testing or to stop the transmission. We have characterized the optimal exponent of type-II error probability under the constraint that type-I error probability does not exceed a given threshold $\epsilon\in (0,1)$ and also when the expectation of the number of requests from decision center is smaller than $n$ which tends to infinity. Interestingly, the optimal exponent coincides with that for fixed-length hypothesis testing with zero-rate communication constraints.
翻译:在本文中, 我们考虑对单个传感器进行连续测试, 单一决定中心设置。 每当每当1美元时, 传感器都会得到K美元样本 $( k>0) 美元, 并描述在零度无噪音链接下直到时间( $t美元) 到决定中心的观察序列。 决定中心会向传感器发送一小段反馈, 以请求更多样本进行压缩/ 测试或停止传输。 我们给出了二型误差概率的最佳推算, 限制是, 类型一误差概率不会超过给定的阈值 $( 0, 1美元), 并且当决定中心的请求数量预期小于美元( 美元), 往往不精确 。 有趣的是, 最佳推算与固定长度的假设测试相吻合, 有零度通信限制 。