We revisit the problem of tolerant distribution testing. That is, given samples from an unknown distribution $p$ over $\{1, \dots, n\}$, is it $\varepsilon_1$-close to or $\varepsilon_2$-far from a reference distribution $q$ (in total variation distance)? Despite significant interest over the past decade, this problem is well understood only in the extreme cases. In the noiseless setting (i.e., $\varepsilon_1 = 0$) the sample complexity is $\Theta(\sqrt{n})$, strongly sublinear in the domain size. At the other end of the spectrum, when $\varepsilon_1 = \varepsilon_2/2$, the sample complexity jumps to the barely sublinear $\Theta(n/\log n)$. However, very little is known about the intermediate regime. We fully characterize the price of tolerance in distribution testing as a function of $n$, $\varepsilon_1$, $\varepsilon_2$, up to a single $\log n$ factor. Specifically, we show the sample complexity to be \[\tilde \Theta\left(\frac{\sqrt{n}}{\varepsilon_2^{2}} + \frac{n}{\log n} \cdot \max \left\{\frac{\varepsilon_1}{\varepsilon_2^2},\left(\frac{\varepsilon_1}{\varepsilon_2^2}\right)^{\!\!2}\right\}\right),\] providing a smooth tradeoff between the two previously known cases. We also provide a similar characterization for the problem of tolerant equivalence testing, where both $p$ and $q$ are unknown. Surprisingly, in both cases, the main quantity dictating the sample complexity is the ratio $\varepsilon_1/\varepsilon_2^2$, and not the more intuitive $\varepsilon_1/\varepsilon_2$. Of particular technical interest is our lower bound framework, which involves novel approximation-theoretic tools required to handle the asymmetry between $\varepsilon_1$ and $\varepsilon_2$, a challenge absent from previous works.


翻译:我们重新审视了宽容分配测试的问题。 也就是说, 从一个未知的分配 $2, 美元2, 美元2, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 基數量, 美元, 基子, 美元, 美元, 基质, 美元, 美元, 基质, 美元, 美元, 基质, 美元, 美元, 美元, 美元, 基质, 美元, 美元, 基质, 美元, 美元, 美元, 美元, 美元, 基, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 基, 基, 基, 基, 基, 基, 基, 基, 基, 基, 基, 基, 基, 基, 基, 基, 基, 美元, 基, 美元, 美元, 美元, 基, 基,, 基, 基, 基, 基, 基, 美元, 基, 基, 基, 基, 基, 基, 基, 基, 基, 美元, 美元, 基, 美元, 基, 基, 基, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 基, 美元, 美元, 美元,

0
下载
关闭预览

相关内容

专知会员服务
57+阅读 · 2021年2月27日
专知会员服务
51+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
0+阅读 · 2022年1月11日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员