We illustrate the limitations of the hyperplane separation bound, a non-combinatorial lower bound on the extension complexity of a polytope. Most notably, this bounding technique is used by Rothvo{\ss} (J ACM 64.6:41, 2017) to establish an exponential lower bound for the perfect matching polytope. We point out that the technique is sensitive to the particular choice of slack matrix. For the canonical slack matrices of the spanning tree polytope and the completion time polytope, we show that the lower bounds produced by the hyperplane separation method are trivial. These bounds may, however, be strengthened by normalizing rows and columns of the slack matrices.


翻译:我们举例说明了超高平板分离约束的局限性,这是对聚域的扩展复杂性的非combinator式下限。最明显的是,Rothvols}(J ACM 64.6:41, 2017)使用这一约束技术来为完美匹配的聚域建立指数性下限。我们指出,该技术对松软矩阵的特定选择十分敏感。对于横跨树形多ope和完成时间聚域的金字裤短网,我们表明超高平板分离方法产生的下限是微不足道的。然而,这些界限可以通过松懈矩阵的行和列的正常化而得到加强。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员