Bayesian optimization involves "inner optimization" over a new-data acquisition criterion which is non-convex/highly multi-modal, may be non-differentiable, or may otherwise thwart local numerical optimizers. In such cases it is common to replace continuous search with a discrete one over random candidates. Here we propose using candidates based on a Delaunay triangulation of the existing input design. We detail the construction of these "tricands" and demonstrate empirically how they outperform both numerically optimized acquisitions and random candidate-based alternatives, and are well-suited for hybrid schemes, on benchmark synthetic and real simulation experiments.
翻译:Bayesian 优化涉及“内部优化”而不是新数据获取标准,新数据获取标准是非节流/高超多模式的,可能是不可区分的,或者可能阻碍本地数字优化。在这种情况下,通常的做法是用一个与随机候选人不同的独立搜索取代连续搜索。在这里,我们提议根据对现有输入设计设计的Delaunay三角图使用候选人。我们详细介绍了这些“三角图”的构建,并用经验来展示它们如何在数字优化的获取和随机候选替代方法上都优于数字优化的获取和随机候选替代方法,并且完全适合混合计划、基准合成和真实模拟实验。