We propose an $\ell_1$-penalized estimator for high-dimensional models of Expected Shortfall (ES). The estimator is obtained as the solution to a least-squares problem for an auxiliary dependent variable, which is defined as a transformation of the dependent variable and a pre-estimated tail quantile. Leveraging a sparsity condition, we derive a nonasymptotic bound on the prediction and estimator errors of the ES estimator, accounting for the estimation error in the dependent variable, and provide conditions under which the estimator is consistent. Our estimator is applicable to heavy-tailed time-series data and we find that the amount of parameters in the model may grow with the sample size at a rate that depends on the dependence and heavy-tailedness in the data. In an empirical application, we consider the systemic risk measure CoES and consider a set of regressors that consists of nonlinear transformations of a set of state variables. We find that the nonlinear model outperforms an unpenalized and untransformed benchmark considerably.
翻译:暂无翻译