Spoken Language Understanding (SLU) is a core task in most human-machine interaction systems. With the emergence of smart homes, smart phones and smart speakers, SLU has become a key technology for the industry. In a classical SLU approach, an Automatic Speech Recognition (ASR) module transcribes the speech signal into a textual representation from which a Natural Language Understanding (NLU) module extracts semantic information. Recently End-to-End SLU (E2E SLU) based on Deep Neural Networks has gained momentum since it benefits from the joint optimization of the ASR and the NLU parts, hence limiting the cascade of error effect of the pipeline architecture. However, little is known about the actual linguistic properties used by E2E models to predict concepts and intents from speech input. In this paper, we present a study identifying the signal features and other linguistic properties used by an E2E model to perform the SLU task. The study is carried out in the application domain of a smart home that has to handle non-English (here French) voice commands. The results show that a good E2E SLU performance does not always require a perfect ASR capability. Furthermore, the results show the superior capabilities of the E2E model in handling background noise and syntactic variation compared to the pipeline model. Finally, a finer-grained analysis suggests that the E2E model uses the pitch information of the input signal to identify voice command concepts. The results and methodology outlined in this paper provide a springboard for further analyses of E2E models in speech processing.


翻译:语言语言理解(SLU)是大多数人机互动系统的核心任务。随着智能家庭、智能电话和智能语言使用者的出现,SLU已成为行业的关键技术。在经典的 SLU 方法中,自动语音识别(ASR)模块将语音信号转换成文字表达方式,自然语言理解(NLU)模块从中提取语义信息。最近,基于深神经网络的终端到 End SLU(E2E SLU) (E2E2E SLU) (E2E2E) 模块(SLU) 获得了动力,因为它得益于ASR和NLU部分的联合优化,从而限制了管道结构的错错效应。然而,对于E2E2E模型用于预测语言输入概念和意图的实际语言属性,人们知之甚少。在本文件中,我们提出一项研究,确定E2ELU模型用于执行SLU任务所使用的信号特征和其他语言属性。这项研究是在智能家庭的应用领域进行的,因为它需要进一步处理非英语语音命令(法国语系),结果显示E2E2ELU的精度分析结果。最后对E2ELU的精度分析显示E2的精度分析, 的精度能力显示,而精度分析则显示E2E2ELU的精度的精度的精度的精度。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月11日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员