Transformer-based pre-trained models have gained much advance in recent years, becoming one of the most important backbones in natural language processing. Recent work shows that the attention mechanism inside Transformer may not be necessary, both convolutional neural networks and multi-layer perceptron based models have also been investigated as Transformer alternatives. In this paper, we consider a graph recurrent network for language model pre-training, which builds a graph structure for each sequence with local token-level communications, together with a sentence-level representation decoupled from other tokens. The original model performs well in domain-specific text classification under supervised training, however, its potential in learning transfer knowledge by self-supervised way has not been fully exploited. We fill this gap by optimizing the architecture and verifying its effectiveness in more general language understanding tasks, for both English and Chinese languages. As for model efficiency, instead of the quadratic complexity in Transformer-based models, our model has linear complexity and performs more efficiently during inference. Moreover, we find that our model can generate more diverse outputs with less contextualized feature redundancy than existing attention-based models.


翻译:近些年来,基于变异器的预培训模型取得了长足的进步,成为自然语言处理中最重要的支柱之一。最近的工作表明,变异器内部的注意机制也许没有必要,变异神经网络和多层光谱模型也作为变异器替代品被调查。在本文中,我们考虑为语言模型预培训建立一个图形经常性网络,用当地象征性的通信为每个序列建立一个图形结构,同时从其他符号中分离出一个判决级别代表。但是,在受监督的培训中,原始模型在特定域文本分类方面表现良好,但在以自我监督的方式学习知识转移方面的潜力没有得到充分利用。我们通过优化结构并用更一般的语言理解英语和中文的任务核实其有效性来填补这一空白。关于模型效率,而不是基于变异器模型的四分复杂度,我们的模型具有线性复杂性,在推断过程中表现得更有效率。此外,我们发现,我们的模型可以产生比现有关注模型更不那么具有背景的特点重复的更多样化的产出。

1
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员