We study the Schwarz overlapping domain decomposition method applied to the Poisson problem on a special family of domains, which by construction consist of a union of a large number of fixed-size subdomains. These domains are motivated by applications in computational chemistry where the subdomains consist of van der Waals balls. As is usual in the theory of domain decomposition methods, the rate of convergence of the Schwarz method is related to a stable subspace decomposition. We derive such a stable decomposition for this family of domains and analyze how the stability "constant" depends on relevant geometric properties of the domain. For this, we introduce new descriptors that are used to formalize the geometry for the family of domains. We show how, for an increasing number of subdomains, the rate of convergence of the Schwarz method depends on specific local geometry descriptors and on one global geometry descriptor. The analysis also naturally provides lower bounds in terms of the descriptors for the smallest eigenvalue of the Laplace eigenvalue problem for this family of domains.
翻译:我们研究了用于Poisson问题的特殊域系的Schwarz重叠的域分解法,这个域系的构造是由大量固定大小子域组成的组合构成的。这些域受计算化学应用的驱动,其次域由van der Waals球组成。与域分解方法理论一样,Schwarz方法的趋同率与稳定的次空分解有关。我们为这个域系得出这样一个稳定的分解法,并分析稳定性“组合”如何取决于域的相关几何特性。为此,我们引入了新的描述符,用来正式确定域系的几何特性。我们表明,对于越来越多的次域系,施瓦兹方法的趋同率取决于具体的当地几何描述仪和一种全球几何描述仪。分析还自然为这一域系最小的Laplace 双基因值问题的解称值提供了较低的分解界限。