In this paper, we study both convergence and bounded variation properties of a new fully discrete conservative Lagrangian--Eulerian scheme to the entropy solution in the sense of Kruzhkov (scalar case) by using a weak asymptotic analysis. We discuss theoretical developments on the conception of no-flow curves for hyperbolic problems within scientific computing. The resulting algorithms have been proven to be effective to study nonlinear wave formations and rarefaction interactions. We present experiments to a study based on the use of the Wasserstein distance to show the effectiveness of the no-flow curves approach in the cases of shock interaction with an entropy wave related to the inviscid Burgers' model problem and to a 2x2 nonlocal traffic flow symmetric system of type Keyfitz--Kranzer.
翻译:在本文中,我们通过使用微弱的无症状分析,研究了一种全新的完全离散保守的Lagrangian-Eularian计划与Kruzjkov(calar case)意义上的对流溶液(calar case)的趋同特性和界限变异特性。我们讨论了科学计算中双曲问题无流曲线概念的理论发展。由此得出的算法已证明对研究非线性波形成和稀有反应有效。我们向一项基于使用Wasserstein距离的研究提出实验,以显示在与与隐形Burgers模型问题和Keyfitz-Kranzer型的2x2非本地交通流量对称系统有关的振荡波相互作用情况下采用无流量曲线方法的有效性。