Modelling a large collection of functional time series arises in a broad spectral of real applications. Under such a scenario, not only the number of functional variables can be diverging with, or even larger than the number of temporally dependent functional observations, but each function itself is an infinite-dimensional object, posing a challenging task. In this paper, we propose a three-step procedure to estimate high-dimensional functional time series models. To provide theoretical guarantees for the three-step procedure, we focus on multivariate stationary processes and propose a novel functional stability measure based on their spectral properties. Such stability measure facilitates the development of some useful concentration bounds on sample (auto)covariance functions, which serve as a fundamental tool for further convergence analysis in high-dimensional settings. As functional principal component analysis (FPCA) is one of the key dimension reduction techniques in the first step, we also investigate the non-asymptotic properties of the relevant estimated terms under a FPCA framework. To illustrate with an important application, we consider vector functional autoregressive models and develop a regularization approach to estimate autoregressive coefficient functions under the sparsity constraint. Using our derived non-asymptotic results, we investigate convergence properties of the regularized estimate under high-dimensional scaling. Finally, the finite-sample performance of the proposed method is examined through both simulations and a public financial dataset.
翻译:模拟大量功能时间序列的大规模收集工作时间序列是在一系列实际应用的宽广光谱中产生的。在这样一种情景下,不仅功能变量的数量可能与样本(自动)相异,甚至可能大于时间依赖功能观测的数量,而且每个函数本身是一个无限的天体,具有挑战性的任务。在本文件中,我们提出一个三步程序来估计高维功能时间序列模型。为三步程序提供理论保证,我们注重多变量固定程序,并根据其光谱特性提出新的功能稳定度措施。在这种情景下,这种稳定度措施便利于在样本(自动)相异功能上开发一些有用的集中度界限,作为在高维环境中进一步进行趋同分析的基本工具。作为功能主要组成部分分析(FMCA)是第一步的关键减少维度技术之一,我们还在FPCA框架内调查相关估计术语的非默认性质。为了进行重要的应用,我们考虑矢量函数自动递增模式,并开发一种正规化方法,用以在中估算中,在中进行进一步趋同性的公共性估计。最后,通过我们所推算的量化的定量分析方法,通过定量分析,通过定量分析结果,通过定量分析,逐步地分析。