We model Alzheimer's disease (AD) progression by combining differential equations (DEs) and reinforcement learning (RL) with domain knowledge. DEs provide relationships between some, but not all, factors relevant to AD. We assume that the missing relationships must satisfy general criteria about the working of the brain, for e.g., maximizing cognition while minimizing the cost of supporting cognition. This allows us to extract the missing relationships by using RL to optimize an objective (reward) function that captures the above criteria. We use our model consisting of DEs (as a simulator) and the trained RL agent to predict individualized 10-year AD progression using baseline (year 0) features on synthetic and real data. The model was comparable or better at predicting 10-year cognition trajectories than state-of-the-art learning-based models. Our interpretable model demonstrated, and provided insights into, "recovery/compensatory" processes that mitigate the effect of AD, even though those processes were not explicitly encoded in the model. Our framework combines DEs with RL for modelling AD progression and has broad applicability for understanding other neurological disorders.
翻译:我们用不同方程(DEs)和强化学习(RL)与域知识相结合来模拟阿尔茨海默氏病(AD)的发展。DEs提供了与AD相关的某些因素(但不是所有因素)之间的关系。我们假设缺失的关系必须满足大脑工作的一般标准,例如,最大限度的认知,同时最大限度地降低支持认知的成本。这使我们能够利用RL优化反映上述标准的客观(回报)功能来提取缺失的关系。我们使用由DEs(模拟器)和受过培训的RL代理物组成的模型,利用合成数据和实际数据的基线(0年)特征来预测个人化的10年自动进展。模型在预测10年的认知轨迹方面比以状态为基础的基于学习模型具有可比性或更好。我们的可解释模型展示了减轻AD效应的“恢复/补偿”过程,并提供了深刻的见解,尽管这些过程没有在模型中明确编码。我们的框架将DEL与模拟AD进步和其他神经障碍的模型结合起来。