We derive a general lower bound for the generalized Hamming weights of nested matrix-product codes, with a particular emphasis on the cases with two and three constituent codes. We also provide an upper bound which is reminiscent of the bounds used for the minimum distance of matrix-product codes. When the constituent codes are two Reed-Solomon codes, we obtain an explicit formula for the generalized Hamming weights of the resulting matrix-product code. We also deal with the non-nested case for the case of two constituent codes.
翻译:暂无翻译