Birkhoff's representation theorem (Birkhoff, 1937) defines a bijection between elements of a distributive lattice and the family of upper sets of an associated poset. Although not used explicitly, this result is at the backbone of the combinatorial algorithm by Irving et al. (1987) for maximizing a linear function over the set of stable matchings in Gale and Shapley's stable marriage model (Gale and Shapley, 1962). In this paper, we introduce a property of distributive lattices, which we term as affine representability, and show its role in efficiently solving linear optimization problems over the elements of a distributive lattice, as well as describing the convex hull of the characteristic vectors of the lattice elements. We apply this concept to the stable matching model with path-independent quota-filling choice functions, thus giving efficient algorithms and a compact polyhedral description for this model. To the best of our knowledge, this model generalizes all models from the literature for which similar results were known, and our paper is the first that proposes efficient algorithms for stable matchings with choice functions, beyond classical extensions of the Deferred Acceptance algorithm.
翻译:Birkhoff Birkhoff 的表达式理论( Birkhoff, 1937年) 定义了分配式拉蒂的元素与相关相容的上一组的元素之间的两边点。 虽然没有被明确使用, 但这一结果是Irving 等人(1987年) 组合算法的支柱, 以便在Gale 和 Shapley 稳定的婚姻模式( Gale 和 Shapley, 1962年) 的稳定匹配组合中最大限度地增加线性功能。 在本文中, 我们引入了分配式拉蒂的属性属性, 我们把它称为“ 亲和代表性”, 并展示了它在有效解决线性拉蒂元素元素元素的线性优化问题方面的作用, 以及描述Lattice 元素特性矢量的螺旋体结构。 我们把这个概念应用到稳定匹配模型中, 其功能取决于路径的配额填补选择功能( Gale 和 Shaple 和 Shaple ) 。 我们所了解的最好的是, 这个模型将文献中的所有模型都概括化为已知的模型,, 并且我们所了解的缩化的缩缩缩化的功能是 。