The Arrow-Debreu extension of the classic Hylland-Zeckhauser scheme for a one-sided matching market -- called ADHZ in this paper -- has natural applications but has instances which do not admit equilibria. By introducing approximation, we define the $\epsilon$-approximate ADHZ model, and we give the following results. * Existence of equilibrium under linear utility functions. We prove that the equilibrium satisfies Pareto optimality, approximate envy-freeness, and approximate weak core stability. * A combinatorial polynomial-time algorithm for an $\epsilon$-approximate ADHZ equilibrium for the case of dichotomous, and more generally bi-valued, utilities. * An instance of ADHZ, with dichotomous utilities and a strongly connected demand graph, which does not admit an equilibrium. Since computing an equilibrium for HZ is likely to be highly intractable and because of the difficulty of extending HZ to more general utility functions, Hosseini and Vazirani proposed (a rich collection of) Nash-bargaining-based matching market models. For the dichotomous-utilities case of their model linear Arrow-Debreu Nash bargaining one-sided matching market (1LAD), we give a combinatorial, strongly polynomial-time algorithm and show that it admits a rational convex program.


翻译:经典的Hylland-Zeckhauser-Zeck-Zeck-Debreu 的箭头-Debreu 扩展, 用于一个单一匹配的市场 -- -- 本文中称为ADHZ -- -- 的经典 Hylland-Zeckhaus 的箭头-Debreu 的箭头- 箭头- 箭头- 箭头- 箭头- Zeckhaus 的延伸, 具有自然应用, 但也有不容许平衡的情况。 通过引入近近似, 我们定义了美元- 接近ADDDHZ 的模式。 我们给出了以下结果。 * 在线性功能下存在平衡。 我们证明, 平衡满足了帕雷托的最佳性、 大致的无嫉妒性, 以及 核心稳定性稳定性稳定性稳定。 * 用于美元/epsseini 和Vazirani 的复合性多价比, 纳什- 巴勒- 阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-阿勒-

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】无监督学习的立体匹配方法(ICCV-2017)
泡泡机器人SLAM
8+阅读 · 2018年10月9日
ACL 2018 计算语言学协会接受论文列表
专知
3+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
从点到线:逻辑回归到条件随机场
夕小瑶的卖萌屋
15+阅读 · 2017年7月22日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年9月21日
Arxiv
0+阅读 · 2021年9月19日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】无监督学习的立体匹配方法(ICCV-2017)
泡泡机器人SLAM
8+阅读 · 2018年10月9日
ACL 2018 计算语言学协会接受论文列表
专知
3+阅读 · 2018年4月27日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
从点到线:逻辑回归到条件随机场
夕小瑶的卖萌屋
15+阅读 · 2017年7月22日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员