A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure, through a rewriting system acting both on resource and MELL proof-structures. As a consequence, we prove also semi-decidability of the type inhabitation problem for cut-free MELL proof-structures.
翻译:一个多倍化、耗资线性逻辑(MELL)的验证结构可以扩大为一套资源验证结构:其泰勒的扩张。我们引入了一种新的标准,将作为泰勒扩大某些多倍化、耗资性线性逻辑(MELL)验证结构的一部分的一组资源验证结构定性为泰勒扩大某些多倍化、耗资性线性逻辑(MELL)验证结构的一部分。因此,我们也证明,对于零排放的 MELL验证结构而言,类型居住问题具有半衰减性。