A plethora of attack methods have been proposed to generate adversarial examples, among which the iterative methods have been demonstrated the ability to find a strong attack. However, the computation of an adversarial perturbation for a new data point requires solving a time-consuming optimization problem from scratch. To generate a stronger attack, it normally requires updating a data point with more iterations. In this paper, we show the existence of a meta adversarial perturbation (MAP), a better initialization that causes natural images to be misclassified with high probability after being updated through only a one-step gradient ascent update, and propose an algorithm for computing such perturbations. We conduct extensive experiments, and the empirical results demonstrate that state-of-the-art deep neural networks are vulnerable to meta perturbations. We further show that these perturbations are not only image-agnostic, but also model-agnostic, as a single perturbation generalizes well across unseen data points and different neural network architectures.


翻译:提出了大量攻击方法来生成对抗性例子,其中迭代方法已证明能够找到强力攻击。然而,计算新数据点的对称扰动需要从零开始解决一个耗时的优化问题。为了产生更强烈的攻击,通常需要用更多迭代来更新一个数据点。在本文中,我们显示存在一个对抗性对称扰动(MAP),一种更好的初始化,在仅通过一步梯度更新更新更新后,自然图像被错误地以高概率分类,并提议一种计算这种扰动的算法。我们进行了广泛的实验,而实验结果也表明,最先进的深神经网络很容易受到元扰动。我们进一步表明,这些扰动不仅具有图像-敏感性,而且具有模型-敏感性,作为单一的扰动性概观,贯穿了看不见的数据点和不同的神经网络结构。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
44+阅读 · 2020年10月31日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
5+阅读 · 2020年6月16日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年11月3日
专知会员服务
44+阅读 · 2020年10月31日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2020年10月22日
Arxiv
5+阅读 · 2020年6月16日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
4+阅读 · 2015年3月20日
Top
微信扫码咨询专知VIP会员