This paper presents a systematic literature review of image datasets for document image analysis, focusing on historical documents, such as handwritten manuscripts and early prints. Finding appropriate datasets for historical document analysis is a crucial prerequisite to facilitate research using different machine learning algorithms. However, because of the very large variety of the actual data (e.g., scripts, tasks, dates, support systems, and amount of deterioration), the different formats for data and label representation, and the different evaluation processes and benchmarks, finding appropriate datasets is a difficult task. This work fills this gap, presenting a meta-study on existing datasets. After a systematic selection process (according to PRISMA guidelines), we select 56 studies that are chosen based on different factors, such as the year of publication, number of methods implemented in the article, reliability of the chosen algorithms, dataset size, and journal outlet. We summarize each study by assigning it to one of three pre-defined tasks: document classification, layout structure, or semantic analysis. We present the statistics, document type, language, tasks, input visual aspects, and ground truth information for every dataset. In addition, we provide the benchmark tasks and results from these papers or recent competitions. We further discuss gaps and challenges in this domain. We advocate for providing conversion tools to common formats (e.g., COCO format for computer vision tasks) and always providing a set of evaluation metrics, instead of just one, to make results comparable across studies.
翻译:本文对用于文件图像分析的图像数据集进行系统的文献审查,重点是手写手稿和早期指纹等历史文件。为历史文件分析寻找适当的数据集是便利使用不同机器学习算法进行研究的关键先决条件。然而,由于实际数据(如脚本、任务、日期、支持系统、变质程度等)种类繁多,数据和标签代表的不同格式,以及不同的评价程序和基准,找到适当的数据集是一项困难的任务。这项工作填补了这一空白,对现有数据集进行了元研究。在系统选择程序(根据PRISMA准则)之后,我们选择了56项研究,这些研究是根据不同因素选择的,例如出版年份、文章中采用的方法数量、所选算法的可靠性、数据集大小和日记外输出量等。我们通过将每项研究分配给三个预先确定的任务之一:文件分类、布局结构或语义分析。我们总是介绍统计、文件类型、语言、任务、输入视觉方面和地面信息。我们从每个数据分类中为每个数据转换提供比较性的文件、基准任务和指标格式,我们为每个领域提供比较性文件提供比较性结论。我们从提供这些比较性研究,为每个领域提供比较性格式提供比较性研究。