The data article describes the Road Damage Dataset, RDD2022, which comprises 47,420 road images from six countries, Japan, India, the Czech Republic, Norway, the United States, and China. The images have been annotated with more than 55,000 instances of road damage. Four types of road damage, namely longitudinal cracks, transverse cracks, alligator cracks, and potholes, are captured in the dataset. The annotated dataset is envisioned for developing deep learning-based methods to detect and classify road damage automatically. The dataset has been released as a part of the Crowd sensing-based Road Damage Detection Challenge (CRDDC2022). The challenge CRDDC2022 invites researchers from across the globe to propose solutions for automatic road damage detection in multiple countries. The municipalities and road agencies may utilize the RDD2022 dataset, and the models trained using RDD2022 for low-cost automatic monitoring of road conditions. Further, computer vision and machine learning researchers may use the dataset to benchmark the performance of different algorithms for other image-based applications of the same type (classification, object detection, etc.).
翻译:数据文章描述了道路损坏数据集,即RDD2022, 由来自日本、印度、捷克共和国、挪威、美国和中国六个国家的47 420个道路图像组成,这些图像附有55 000多条道路损坏的附加说明,其中四类道路损坏,即纵向裂缝、横贯裂缝、鳄鱼裂缝和坑洞,在数据集中记录。附加说明的数据集设想用于开发基于深层次学习的探测和自动分类道路损坏的方法。数据集已作为基于人群的公路损坏探测挑战(CRDDC2022)的一部分发布。挑战CRDDC2022邀请全球研究人员提出在多个国家自动探测道路损坏的解决方案。市政当局和道路机构可以利用RDDD2022数据集,以及利用RDD2022培训的模型对道路状况进行低成本自动监测。此外,计算机视觉和机器学习研究人员可使用该数据集为同一类型基于图像的其他应用(分类、物体探测等)的不同算法的绩效基准。