We consider the problem of \textit{Influence Maximization} (IM), the task of selecting $k$ seed nodes in a social network such that the expected number of nodes influenced is maximized. We propose a community-aware divide-and-conquer framework that involves (i) learning the inherent community structure of the social network, (ii) generating candidate solutions by solving the influence maximization problem for each community, and (iii) selecting the final set of seed nodes using a novel progressive budgeting scheme. Our experiments on real-world social networks show that the proposed framework outperforms the standard methods in terms of run-time and the heuristic methods in terms of influence. We also study the effect of the community structure on the performance of the proposed framework. Our experiments show that the community structures with higher modularity lead the proposed framework to perform better in terms of run-time and influence.
翻译:我们考虑了在社会网络中选择k$种子节点的任务(IM)问题,在社会网络中选择k$种子节点的任务,这样受影响的节点的预期数目就会最大化。我们提议了一个社区意识分化框架,其中包括(一) 学习社会网络固有的社区结构,(二) 通过解决每个社区的影响最大化问题产生候选解决方案,(三) 利用新的渐进式预算编制计划选择最后一组种子节点。我们在现实世界社会网络上的实验表明,拟议的框架在运行时间和超常方法的影响力方面超过了标准方法。我们还研究了社区结构对拟议框架绩效的影响。我们的实验表明,模块化程度较高的社区结构领导了拟议的框架,以便在运行时间和影响力方面更好地发挥作用。