Patankar-type schemes are linearly implicit time integration methods designed to be unconditionally positivity-preserving by going outside of the class of general linear methods. Thus, classical stability concepts cannot be applied and there is no satisfying stability or robustness theory for these schemes. We develop a new approach to study a few related issues that impact some Patankar-type methods. In particular, we demonstrate problematic behaviors of these methods that can lead to undesired oscillations or order reduction on very simple linear problems. Extreme cases of the latter manifest as spurious steady states. We investigate various classes of Patankar-type schemes based on classical Runge-Kutta methods, strong stability preserving Runge-Kutta methods, and deferred correction schemes using our approach. Finally, we strengthen our analysis with challenging applications including stiff nonlinear problems.
翻译:Patankar型计划是线性隐含的时间整合方法,其设计是,通过超越一般线性方法的范畴,无条件保护积极性。因此,传统稳定概念无法适用,对这些计划没有令人满意的稳定性或稳健性理论。我们开发了一种新的方法,研究影响Patankar型方法的几个相关问题。特别是,我们展示了这些方法有问题的行为,可能导致非常简单的线性问题出现不理想的振动或减少命令。后者的极端案例明显为虚假的稳定状态。我们调查了基于经典Runge-Kutta型计划的不同种类的Patankar型计划,强有力的稳定性保护Runge-Kutta型方法,以及使用我们的方法的推迟修正计划。最后,我们用挑战性的应用,包括僵硬的非线性问题,加强了我们的分析。