People's looking at each other or mutual gaze is ubiquitous in our daily interactions, and detecting mutual gaze is of great significance for understanding human social scenes. Current mutual gaze detection methods focus on two-stage methods, whose inference speed is limited by the two-stage pipeline and the performance in the second stage is affected by the first one. In this paper, we propose a novel one-stage mutual gaze detection framework called Mutual Gaze TRansformer or MGTR to perform mutual gaze detection in an end-to-end manner. By designing mutual gaze instance triples, MGTR can detect each human head bounding box and simultaneously infer mutual gaze relationship based on global image information, which streamlines the whole process with simplicity. Experimental results on two mutual gaze datasets show that our method is able to accelerate mutual gaze detection process without losing performance. Ablation study shows that different components of MGTR can capture different levels of semantic information in images. Code is available at https://github.com/Gmbition/MGTR


翻译:我们的日常互动中,人们互相看对方或互相看对方是无处不在的,发现相互看视对于了解人类的社会场景具有重大意义。当前相互看视的探测方法侧重于两阶段方法,其推论速度受两阶段输油管和第二阶段的性能受第一阶段的影响。在本文中,我们提出一个名为“相互凝视TRansfor或MGTR”的新的一阶段相互望探测框架,以以最终到终端的方式进行相互凝视探测。通过设计相互凝视实例的三倍,MGTR能够检测每个人的头盘,同时根据全球图像信息推断出相互凝视关系,从而简化整个过程。两个相互凝视数据集的实验结果显示,我们的方法能够加快相互凝视的探测过程,同时又不丧失性能。Abllog研究显示,MGTR的不同组成部分可以在图像中捕捉不同层次的语义信息。代码可在http://github.com/Gmbify/MGTR上查阅。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月10日
Arxiv
0+阅读 · 2022年11月10日
Arxiv
11+阅读 · 2022年3月16日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关论文
Arxiv
0+阅读 · 2022年11月10日
Arxiv
0+阅读 · 2022年11月10日
Arxiv
11+阅读 · 2022年3月16日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
19+阅读 · 2018年3月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员