Having a rich multimodal inner language is an important component of human intelligence that enables several necessary core cognitive functions such as multimodal prediction, translation, and generation. Building upon the Conscious Turing Machine (CTM), a machine model for consciousness proposed by Blum and Blum (2021), we describe the desiderata of a multimodal language called Brainish, comprising words, images, audio, and sensations combined in representations that the CTM's processors use to communicate with each other. We define the syntax and semantics of Brainish before operationalizing this language through the lens of multimodal artificial intelligence, a vibrant research area studying the computational tools necessary for processing and relating information from heterogeneous signals. Our general framework for learning Brainish involves designing (1) unimodal encoders to segment and represent unimodal data, (2) a coordinated representation space that relates and composes unimodal features to derive holistic meaning across multimodal inputs, and (3) decoders to map multimodal representations into predictions (for fusion) or raw data (for translation or generation). Through discussing how Brainish is crucial for communication and coordination in order to achieve consciousness in the CTM, and by implementing a simple version of Brainish and evaluating its capability of demonstrating intelligence on multimodal prediction and retrieval tasks on several real-world image, text, and audio datasets, we argue that such an inner language will be important for advances in machine models of intelligence and consciousness.


翻译:拥有丰富的多式联运内部语言是人类智能的重要组成部分,它使多种语言能够发挥若干必要的核心认知功能,如多式联运预测、翻译和生成等。我们以Blum和Blum(2021年)提出的“自觉图灵机(CTM)”这一感知机器模型为基础,描述了一种称为“脑”的多式联运语言的贬义,它由词、图像、音频和感知组成,代表了CTM的处理者相互交流所使用的整体含义。我们通过多式联运人工智能的透镜界定了大脑的语法和语义。这是一个充满活力的研究领域,研究处理和与来自不同信号的信息所需的计算工具。我们的“脑学”总体框架包括设计:(1) 单式编码器,用于分段和代表单式数据,(2) 协调的表达空间,它与多种多式联运输入者使用的整体含义有关,(3) 解码器将多式联运表达成预测(聚合)或原始数据(翻译或生成)。我们通过讨论“自觉智能”如何对通信和协调至关重要,以便在CTM中实现意识,而我们“自觉”的计算”的计算,通过执行一个简单版本的智能和智能,从而显示一种简单版本的智能的智能分析能力。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
35+阅读 · 2022年3月14日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员