The parameter space of nonnegative trigonometric sums (NNTS) models for circular data is the surface of a hypersphere; thus, constructing regression models for a circular-dependent variable using NNTS models can comprise fitting great (small) circles on the parameter hypersphere that can identify different regions (rotations) along the great (small) circle. We propose regression models for circular- (angular-) dependent random variables in which the original circular random variable, which is assumed to be distributed (marginally) as an NNTS model, is transformed into a linear random variable such that common methods for linear regression can be applied. The usefulness of NNTS models with skewness and multimodality is shown in examples with simulated and real data.
翻译:圆形数据非负三角数(NNTS)模型的参数空间是超视距表面;因此,使用 NNTS 模型为循环依赖变量构建回归模型时,可以在参数超视距上安装大(小)圆圈,以识别大(小)圆形上的不同区域(旋转)。我们为圆形(角)依赖随机变量提出了回归模型,在这种变量中,原圆形随机变量被假定作为圆形(半径)作为圆形随机变量分布,被转换成线性随机变量,从而可以应用共同的线性回归方法。在模拟和真实数据实例中显示了带有斜度和多式的NNTS模型的有用性。