Huemer et al. (Discrete Math, 2019) proved that for any two finite point sets $R$ and $B$ in the plane with $|R| = |B|$, the perfect matching that matches points of $R$ with points of $B$, and maximizes the total squared Euclidean distance of the matched pairs, has the property that all the disks induced by the matching have a nonempty common intersection. A pair of matched points induces the disk that has the segment connecting the points as diameter. In this note, we characterize these maximum-sum matchings for any continuous (semi)metric, focusing on both the Euclidean distance and squared Euclidean distance. Using this characterization, we give a different but simpler proof for the common intersection property proved by Huemer et al..
翻译:暂无翻译