It is known from the algebraic graph theory that if $L$ is the Laplacian matrix of some tree $G$ with a vertex degree sequence $\mathbf{d}=(d_1, ..., d_n)^\top$ and $D$ is its distance matrix, then $LD+2I=(2\cdot\mathbf{1}-\mathbf{d})\mathbf{1}^\top$, where $\mathbf{1}$ is an all-ones column vector. We prove that if this matrix identity holds for the Laplacian matrix of some graph $G$ with a degree sequence $\mathbf{d}$ and for some matrix $D$, then $G$ is essentially a tree, and $D$ is its distance matrix. This result immediately generalizes to weighted graphs. If the matrix $D$ is symmetric, the lower triangular part of this matrix identity is redundant and can be omitted. Therefore, the above bilinear matrix equation in $L$, $D$, and $\mathbf{d}$ characterizes trees in terms of their Laplacian and distance matrices. Applications to the extremal graph theory (especially, to topological index optimization and to optimal tree problems) and to road topology design are discussed.
翻译:从位数图形理论中可以知道,如果$L$是某些树的拉普拉西亚基质, $G$是某种树的拉普拉卡基质 $G$, 顶部$[d_1,......, d_n) $@top$和$D$是它的距离基质, 那么$LD+2I=( 2\cdot\mathbf{1}-\mathbf{{d})\ mathbf{1} 顶部$, 美元是所有单位的矢量。 我们证明, 如果这个基质身份包含一些具有顶级序列$G$G$(d_1,..., d_n) 和 美元是它的远端矩阵, 那么$G$基本上是一个树, 美元是它的距离基质图。 如果矩阵 $D$是正数, 这个基质指数的较低三角部分是多余的, 可以省略。 因此, 上面的双线基质矩阵基质方方方方方方方方方( $D$, 和 mextial deal descrial degrational deal deal destrate) rial deal descrial deal deal deal 和 rigromato rigromax 和 rigromas met rimas mours metsmetsm 和 和 rial demax rial destruttal demax 和 rial demax 和 rigrigrigromax rigromax rigromax 和 rimax rigromax rigromax rigromax 。