We provide upper bounds on the perturbation of invariant subspace of normal matrices measured using a metric in the space of vector subspaces of $\mathbb{C}^n$. We derive the upper-bounds in terms of (1) the spectrum of both the unperturbed and perturbed matrices, as well as, (2) the spectrum of the unperturbed matrix only. We show that if the spectrum is well-clustered (a relation formally described as "separation-preserving perturbation"), the later kind of upper-bound is possible and the corresponding perturbed subspace is also computable. All results are computationally favorable (e.g., computing the bounds do not require combinatorial searches or solving non-trivial optimization problems). We apply the result to a graph perturbation problem.
翻译:我们提供正常矩阵的变异子空间的振动的上界值, 使用 $\ mathbb{C ⁇ {C ⁇ n$ 的矢量子空间中测量的正常矩阵的度量空间。 我们从以下角度得出上界值:(1) 未扰动和受扰动的矩阵的频谱,(2) 仅提供未扰动的矩阵的频谱。 我们显示, 如果频谱的频谱是周密的( 正式描述为“ 分离- 保留扰动 ” 的关联 ), 后界值是可能的, 相应的扰动的子空间也是可比较的 。 所有结果都是可计算好的( 例如, 计算边框不需要组合搜索或解决非三角优化问题 ) 。 我们将结果应用到图形的扰动问题 。