We study temporal analogues of the Unrestricted Vertex Separator problem from the static world. An $(s,z)$-temporal separator is a set of vertices whose removal disconnects vertex $s$ from vertex $z$ for every time step in a temporal graph. The $(s,z)$-Temporal Separator problem asks to find the minimum size of an $(s,z)$-temporal separator for the given temporal graph. We introduce a generalization of this problem called the $(s,z,t)$-Temporal Separator problem, where the goal is to find a smallest subset of vertices whose removal eliminates all temporal paths from $s$ to $z$ which take less than $t$ time steps. Let $\tau$ denote the number of time steps over which the temporal graph is defined (we consider discrete time steps). We characterize the set of parameters $\tau$ and $t$ when the problem is $\mathcal{NP}$-hard and when it is polynomial time solvable. Then we present a $\tau$-approximation algorithm for the $(s,z)$-Temporal Separator problem and convert it to a $\tau^2$-approximation algorithm for the $(s,z,t)$-Temporal Separator problem. We also present an inapproximability lower bound of $\Omega(\ln(n) + \ln(\tau))$ for the $(s,z,t)$-Temporal Separator problem assuming that $\mathcal{NP}\not\subset\mbox{\sc Dtime}(n^{\log\log n})$. Then we consider three special families of graphs: (1) graphs of branchwidth at most $2$, (2) graphs $G$ such that the removal of $s$ and $z$ leaves a tree, and (3) graphs of bounded pathwidth. We present polynomial-time algorithms to find a minimum $(s,z,t)$-temporal separator for (1) and (2). As for (3), we show a polynomial-time reduction from the Discrete Segment Covering problem with bounded-length segments to the $(s,z,t)$-Temporal Separator problem where the temporal graph has bounded pathwidth.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月7日
Arxiv
0+阅读 · 2023年11月7日
Arxiv
0+阅读 · 2023年11月3日
Arxiv
0+阅读 · 2023年11月3日
Arxiv
0+阅读 · 2023年11月2日
Arxiv
0+阅读 · 2023年11月1日
Arxiv
19+阅读 · 2021年2月4日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
Arxiv
0+阅读 · 2023年11月7日
Arxiv
0+阅读 · 2023年11月7日
Arxiv
0+阅读 · 2023年11月3日
Arxiv
0+阅读 · 2023年11月3日
Arxiv
0+阅读 · 2023年11月2日
Arxiv
0+阅读 · 2023年11月1日
Arxiv
19+阅读 · 2021年2月4日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员